'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  a(d(x)) -> d(c(b(a(x))))
     , b(c(x)) -> c(d(a(b(x))))
     , a(c(x)) -> x
     , b(d(x)) -> x}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  a^#(d(x)) -> c_0(b^#(a(x)))
    , b^#(c(x)) -> c_1(a^#(b(x)))
    , a^#(c(x)) -> c_2()
    , b^#(d(x)) -> c_3()}
  
  The usable rules are:
   {  a(d(x)) -> d(c(b(a(x))))
    , b(c(x)) -> c(d(a(b(x))))
    , a(c(x)) -> x
    , b(d(x)) -> x}
  
  The estimated dependency graph contains the following edges:
   {a^#(d(x)) -> c_0(b^#(a(x)))}
     ==> {b^#(c(x)) -> c_1(a^#(b(x)))}
   {a^#(d(x)) -> c_0(b^#(a(x)))}
     ==> {b^#(d(x)) -> c_3()}
   {b^#(c(x)) -> c_1(a^#(b(x)))}
     ==> {a^#(c(x)) -> c_2()}
   {b^#(c(x)) -> c_1(a^#(b(x)))}
     ==> {a^#(d(x)) -> c_0(b^#(a(x)))}
  
  We consider the following path(s):
   1) {  a^#(d(x)) -> c_0(b^#(a(x)))
       , b^#(c(x)) -> c_1(a^#(b(x)))}
      
      The usable rules for this path are the following:
      {  a(d(x)) -> d(c(b(a(x))))
       , b(c(x)) -> c(d(a(b(x))))
       , a(c(x)) -> x
       , b(d(x)) -> x}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  a(d(x)) -> d(c(b(a(x))))
               , b(c(x)) -> c(d(a(b(x))))
               , a(c(x)) -> x
               , b(d(x)) -> x
               , a^#(d(x)) -> c_0(b^#(a(x)))
               , b^#(c(x)) -> c_1(a^#(b(x)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {a(c(x)) -> x}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a(c(x)) -> x}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {b^#(c(x)) -> c_1(a^#(b(x)))}
            and weakly orienting the rules
            {a(c(x)) -> x}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {b^#(c(x)) -> c_1(a^#(b(x)))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [3]
                  b^#(x1) = [1] x1 + [8]
                  c_1(x1) = [1] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a^#(d(x)) -> c_0(b^#(a(x)))}
            and weakly orienting the rules
            {  b^#(c(x)) -> c_1(a^#(b(x)))
             , a(c(x)) -> x}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a^#(d(x)) -> c_0(b^#(a(x)))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [8]
                  b(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [3]
                  c_0(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {b(d(x)) -> x}
            and weakly orienting the rules
            {  a^#(d(x)) -> c_0(b^#(a(x)))
             , b^#(c(x)) -> c_1(a^#(b(x)))
             , a(c(x)) -> x}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {b(d(x)) -> x}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [5]
                  b(x1) = [1] x1 + [1]
                  a^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [3]
                  b^#(x1) = [1] x1 + [4]
                  c_1(x1) = [1] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  a(d(x)) -> d(c(b(a(x))))
                 , b(c(x)) -> c(d(a(b(x))))}
              Weak Rules:
                {  b(d(x)) -> x
                 , a^#(d(x)) -> c_0(b^#(a(x)))
                 , b^#(c(x)) -> c_1(a^#(b(x)))
                 , a(c(x)) -> x}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  a(d(x)) -> d(c(b(a(x))))
                   , b(c(x)) -> c(d(a(b(x))))}
                Weak Rules:
                  {  b(d(x)) -> x
                   , a^#(d(x)) -> c_0(b^#(a(x)))
                   , b^#(c(x)) -> c_1(a^#(b(x)))
                   , a(c(x)) -> x}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  a_0(2) -> 9
                 , a_0(3) -> 9
                 , a_1(2) -> 14
                 , a_1(3) -> 14
                 , a_1(17) -> 16
                 , d_0(2) -> 2
                 , d_0(2) -> 9
                 , d_0(2) -> 11
                 , d_0(2) -> 13
                 , d_0(2) -> 14
                 , d_0(2) -> 16
                 , d_0(2) -> 17
                 , d_0(3) -> 2
                 , d_0(3) -> 9
                 , d_0(3) -> 11
                 , d_0(3) -> 13
                 , d_0(3) -> 14
                 , d_0(3) -> 16
                 , d_0(3) -> 17
                 , d_1(12) -> 9
                 , d_1(12) -> 14
                 , d_1(12) -> 16
                 , d_1(16) -> 15
                 , d_1(16) -> 16
                 , c_0(2) -> 3
                 , c_0(2) -> 9
                 , c_0(2) -> 11
                 , c_0(2) -> 13
                 , c_0(2) -> 14
                 , c_0(2) -> 16
                 , c_0(2) -> 17
                 , c_0(3) -> 3
                 , c_0(3) -> 9
                 , c_0(3) -> 11
                 , c_0(3) -> 13
                 , c_0(3) -> 14
                 , c_0(3) -> 16
                 , c_0(3) -> 17
                 , c_1(13) -> 12
                 , c_1(13) -> 13
                 , c_1(15) -> 11
                 , c_1(15) -> 13
                 , c_1(15) -> 17
                 , b_0(2) -> 11
                 , b_0(3) -> 11
                 , b_1(2) -> 17
                 , b_1(3) -> 17
                 , b_1(14) -> 13
                 , a^#_0(2) -> 5
                 , a^#_0(3) -> 5
                 , a^#_0(11) -> 10
                 , a^#_1(17) -> 19
                 , c_0_0(8) -> 5
                 , c_0_1(18) -> 5
                 , c_0_1(18) -> 10
                 , c_0_1(18) -> 19
                 , b^#_0(2) -> 7
                 , b^#_0(3) -> 7
                 , b^#_0(9) -> 8
                 , b^#_1(14) -> 18
                 , c_1_0(10) -> 7
                 , c_1_1(19) -> 7
                 , c_1_1(19) -> 8
                 , c_1_1(19) -> 18}
      
   2) {  a^#(d(x)) -> c_0(b^#(a(x)))
       , b^#(c(x)) -> c_1(a^#(b(x)))
       , b^#(d(x)) -> c_3()}
      
      The usable rules for this path are the following:
      {  a(d(x)) -> d(c(b(a(x))))
       , b(c(x)) -> c(d(a(b(x))))
       , a(c(x)) -> x
       , b(d(x)) -> x}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  a(d(x)) -> d(c(b(a(x))))
               , b(c(x)) -> c(d(a(b(x))))
               , a(c(x)) -> x
               , b(d(x)) -> x
               , a^#(d(x)) -> c_0(b^#(a(x)))
               , b^#(c(x)) -> c_1(a^#(b(x)))
               , b^#(d(x)) -> c_3()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {a(c(x)) -> x}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a(c(x)) -> x}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  b^#(c(x)) -> c_1(a^#(b(x)))
             , b^#(d(x)) -> c_3()}
            and weakly orienting the rules
            {a(c(x)) -> x}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  b^#(c(x)) -> c_1(a^#(b(x)))
               , b^#(d(x)) -> c_3()}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [3]
                  b^#(x1) = [1] x1 + [8]
                  c_1(x1) = [1] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a^#(d(x)) -> c_0(b^#(a(x)))}
            and weakly orienting the rules
            {  b^#(c(x)) -> c_1(a^#(b(x)))
             , b^#(d(x)) -> c_3()
             , a(c(x)) -> x}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a^#(d(x)) -> c_0(b^#(a(x)))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [8]
                  b(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [2]
                  c_0(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {b(d(x)) -> x}
            and weakly orienting the rules
            {  a^#(d(x)) -> c_0(b^#(a(x)))
             , b^#(c(x)) -> c_1(a^#(b(x)))
             , b^#(d(x)) -> c_3()
             , a(c(x)) -> x}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {b(d(x)) -> x}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [9]
                  b(x1) = [1] x1 + [8]
                  a^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  a(d(x)) -> d(c(b(a(x))))
                 , b(c(x)) -> c(d(a(b(x))))}
              Weak Rules:
                {  b(d(x)) -> x
                 , a^#(d(x)) -> c_0(b^#(a(x)))
                 , b^#(c(x)) -> c_1(a^#(b(x)))
                 , b^#(d(x)) -> c_3()
                 , a(c(x)) -> x}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  a(d(x)) -> d(c(b(a(x))))
                   , b(c(x)) -> c(d(a(b(x))))}
                Weak Rules:
                  {  b(d(x)) -> x
                   , a^#(d(x)) -> c_0(b^#(a(x)))
                   , b^#(c(x)) -> c_1(a^#(b(x)))
                   , b^#(d(x)) -> c_3()
                   , a(c(x)) -> x}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  a_0(2) -> 4
                 , a_1(2) -> 9
                 , a_1(12) -> 11
                 , d_0(2) -> 2
                 , d_0(2) -> 4
                 , d_0(2) -> 6
                 , d_0(2) -> 8
                 , d_0(2) -> 9
                 , d_0(2) -> 11
                 , d_0(2) -> 12
                 , d_1(7) -> 4
                 , d_1(7) -> 9
                 , d_1(7) -> 11
                 , d_1(11) -> 10
                 , d_1(11) -> 11
                 , c_0(2) -> 2
                 , c_0(2) -> 4
                 , c_0(2) -> 6
                 , c_0(2) -> 8
                 , c_0(2) -> 9
                 , c_0(2) -> 11
                 , c_0(2) -> 12
                 , c_1(8) -> 7
                 , c_1(8) -> 8
                 , c_1(10) -> 6
                 , c_1(10) -> 8
                 , c_1(10) -> 12
                 , b_0(2) -> 6
                 , b_1(2) -> 12
                 , b_1(9) -> 8
                 , a^#_0(2) -> 1
                 , a^#_0(6) -> 5
                 , a^#_1(12) -> 14
                 , c_0_0(3) -> 1
                 , c_0_1(13) -> 1
                 , c_0_1(13) -> 5
                 , c_0_1(13) -> 14
                 , b^#_0(2) -> 1
                 , b^#_0(4) -> 3
                 , b^#_1(9) -> 13
                 , c_1_0(5) -> 1
                 , c_1_1(14) -> 1
                 , c_1_1(14) -> 3
                 , c_1_1(14) -> 13
                 , c_3_0() -> 1
                 , c_3_0() -> 3
                 , c_3_1() -> 3
                 , c_3_1() -> 13}
      
   3) {  a^#(d(x)) -> c_0(b^#(a(x)))
       , b^#(c(x)) -> c_1(a^#(b(x)))
       , a^#(c(x)) -> c_2()}
      
      The usable rules for this path are the following:
      {  a(d(x)) -> d(c(b(a(x))))
       , b(c(x)) -> c(d(a(b(x))))
       , a(c(x)) -> x
       , b(d(x)) -> x}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  a(d(x)) -> d(c(b(a(x))))
               , b(c(x)) -> c(d(a(b(x))))
               , a(c(x)) -> x
               , b(d(x)) -> x
               , a^#(d(x)) -> c_0(b^#(a(x)))
               , b^#(c(x)) -> c_1(a^#(b(x)))
               , a^#(c(x)) -> c_2()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  a(c(x)) -> x
             , a^#(c(x)) -> c_2()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a(c(x)) -> x
               , a^#(c(x)) -> c_2()}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {b^#(c(x)) -> c_1(a^#(b(x)))}
            and weakly orienting the rules
            {  a(c(x)) -> x
             , a^#(c(x)) -> c_2()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {b^#(c(x)) -> c_1(a^#(b(x)))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [10]
                  b^#(x1) = [1] x1 + [9]
                  c_1(x1) = [1] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a^#(d(x)) -> c_0(b^#(a(x)))}
            and weakly orienting the rules
            {  b^#(c(x)) -> c_1(a^#(b(x)))
             , a(c(x)) -> x
             , a^#(c(x)) -> c_2()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a^#(d(x)) -> c_0(b^#(a(x)))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [8]
                  b(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [2]
                  c_0(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {b(d(x)) -> x}
            and weakly orienting the rules
            {  a^#(d(x)) -> c_0(b^#(a(x)))
             , b^#(c(x)) -> c_1(a^#(b(x)))
             , a(c(x)) -> x
             , a^#(c(x)) -> c_2()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {b(d(x)) -> x}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [10]
                  b(x1) = [1] x1 + [8]
                  a^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  a(d(x)) -> d(c(b(a(x))))
                 , b(c(x)) -> c(d(a(b(x))))}
              Weak Rules:
                {  b(d(x)) -> x
                 , a^#(d(x)) -> c_0(b^#(a(x)))
                 , b^#(c(x)) -> c_1(a^#(b(x)))
                 , a(c(x)) -> x
                 , a^#(c(x)) -> c_2()}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  a(d(x)) -> d(c(b(a(x))))
                   , b(c(x)) -> c(d(a(b(x))))}
                Weak Rules:
                  {  b(d(x)) -> x
                   , a^#(d(x)) -> c_0(b^#(a(x)))
                   , b^#(c(x)) -> c_1(a^#(b(x)))
                   , a(c(x)) -> x
                   , a^#(c(x)) -> c_2()}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  a_0(2) -> 9
                 , a_0(3) -> 9
                 , a_1(2) -> 14
                 , a_1(3) -> 14
                 , a_1(17) -> 16
                 , d_0(2) -> 2
                 , d_0(2) -> 9
                 , d_0(2) -> 11
                 , d_0(2) -> 13
                 , d_0(2) -> 14
                 , d_0(2) -> 16
                 , d_0(2) -> 17
                 , d_0(3) -> 2
                 , d_0(3) -> 9
                 , d_0(3) -> 11
                 , d_0(3) -> 13
                 , d_0(3) -> 14
                 , d_0(3) -> 16
                 , d_0(3) -> 17
                 , d_1(12) -> 9
                 , d_1(12) -> 14
                 , d_1(12) -> 16
                 , d_1(16) -> 15
                 , d_1(16) -> 16
                 , c_0(2) -> 3
                 , c_0(2) -> 9
                 , c_0(2) -> 11
                 , c_0(2) -> 13
                 , c_0(2) -> 14
                 , c_0(2) -> 16
                 , c_0(2) -> 17
                 , c_0(3) -> 3
                 , c_0(3) -> 9
                 , c_0(3) -> 11
                 , c_0(3) -> 13
                 , c_0(3) -> 14
                 , c_0(3) -> 16
                 , c_0(3) -> 17
                 , c_1(13) -> 12
                 , c_1(13) -> 13
                 , c_1(15) -> 11
                 , c_1(15) -> 13
                 , c_1(15) -> 17
                 , b_0(2) -> 11
                 , b_0(3) -> 11
                 , b_1(2) -> 17
                 , b_1(3) -> 17
                 , b_1(14) -> 13
                 , a^#_0(2) -> 5
                 , a^#_0(3) -> 5
                 , a^#_0(11) -> 10
                 , a^#_1(17) -> 19
                 , c_0_0(8) -> 5
                 , c_0_1(18) -> 5
                 , c_0_1(18) -> 10
                 , c_0_1(18) -> 19
                 , b^#_0(2) -> 7
                 , b^#_0(3) -> 7
                 , b^#_0(9) -> 8
                 , b^#_1(14) -> 18
                 , c_1_0(10) -> 7
                 , c_1_1(19) -> 7
                 , c_1_1(19) -> 8
                 , c_1_1(19) -> 18
                 , c_2_0() -> 5
                 , c_2_0() -> 10
                 , c_2_1() -> 10
                 , c_2_1() -> 19}