'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { a(d(x)) -> d(c(b(a(x)))) , b(c(x)) -> c(d(a(b(x)))) , a(c(x)) -> x , b(d(x)) -> x} Details: We have computed the following set of weak (innermost) dependency pairs: { a^#(d(x)) -> c_0(b^#(a(x))) , b^#(c(x)) -> c_1(a^#(b(x))) , a^#(c(x)) -> c_2() , b^#(d(x)) -> c_3()} The usable rules are: { a(d(x)) -> d(c(b(a(x)))) , b(c(x)) -> c(d(a(b(x)))) , a(c(x)) -> x , b(d(x)) -> x} The estimated dependency graph contains the following edges: {a^#(d(x)) -> c_0(b^#(a(x)))} ==> {b^#(c(x)) -> c_1(a^#(b(x)))} {a^#(d(x)) -> c_0(b^#(a(x)))} ==> {b^#(d(x)) -> c_3()} {b^#(c(x)) -> c_1(a^#(b(x)))} ==> {a^#(c(x)) -> c_2()} {b^#(c(x)) -> c_1(a^#(b(x)))} ==> {a^#(d(x)) -> c_0(b^#(a(x)))} We consider the following path(s): 1) { a^#(d(x)) -> c_0(b^#(a(x))) , b^#(c(x)) -> c_1(a^#(b(x)))} The usable rules for this path are the following: { a(d(x)) -> d(c(b(a(x)))) , b(c(x)) -> c(d(a(b(x)))) , a(c(x)) -> x , b(d(x)) -> x} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { a(d(x)) -> d(c(b(a(x)))) , b(c(x)) -> c(d(a(b(x)))) , a(c(x)) -> x , b(d(x)) -> x , a^#(d(x)) -> c_0(b^#(a(x))) , b^#(c(x)) -> c_1(a^#(b(x)))} Details: We apply the weight gap principle, strictly orienting the rules {a(c(x)) -> x} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a(c(x)) -> x} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {b^#(c(x)) -> c_1(a^#(b(x)))} and weakly orienting the rules {a(c(x)) -> x} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {b^#(c(x)) -> c_1(a^#(b(x)))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [3] b^#(x1) = [1] x1 + [8] c_1(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a^#(d(x)) -> c_0(b^#(a(x)))} and weakly orienting the rules { b^#(c(x)) -> c_1(a^#(b(x))) , a(c(x)) -> x} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a^#(d(x)) -> c_0(b^#(a(x)))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] c(x1) = [1] x1 + [8] b(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [3] c_0(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {b(d(x)) -> x} and weakly orienting the rules { a^#(d(x)) -> c_0(b^#(a(x))) , b^#(c(x)) -> c_1(a^#(b(x))) , a(c(x)) -> x} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {b(d(x)) -> x} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] c(x1) = [1] x1 + [5] b(x1) = [1] x1 + [1] a^#(x1) = [1] x1 + [8] c_0(x1) = [1] x1 + [3] b^#(x1) = [1] x1 + [4] c_1(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { a(d(x)) -> d(c(b(a(x)))) , b(c(x)) -> c(d(a(b(x))))} Weak Rules: { b(d(x)) -> x , a^#(d(x)) -> c_0(b^#(a(x))) , b^#(c(x)) -> c_1(a^#(b(x))) , a(c(x)) -> x} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { a(d(x)) -> d(c(b(a(x)))) , b(c(x)) -> c(d(a(b(x))))} Weak Rules: { b(d(x)) -> x , a^#(d(x)) -> c_0(b^#(a(x))) , b^#(c(x)) -> c_1(a^#(b(x))) , a(c(x)) -> x} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { a_0(2) -> 9 , a_0(3) -> 9 , a_1(2) -> 14 , a_1(3) -> 14 , a_1(17) -> 16 , d_0(2) -> 2 , d_0(2) -> 9 , d_0(2) -> 11 , d_0(2) -> 13 , d_0(2) -> 14 , d_0(2) -> 16 , d_0(2) -> 17 , d_0(3) -> 2 , d_0(3) -> 9 , d_0(3) -> 11 , d_0(3) -> 13 , d_0(3) -> 14 , d_0(3) -> 16 , d_0(3) -> 17 , d_1(12) -> 9 , d_1(12) -> 14 , d_1(12) -> 16 , d_1(16) -> 15 , d_1(16) -> 16 , c_0(2) -> 3 , c_0(2) -> 9 , c_0(2) -> 11 , c_0(2) -> 13 , c_0(2) -> 14 , c_0(2) -> 16 , c_0(2) -> 17 , c_0(3) -> 3 , c_0(3) -> 9 , c_0(3) -> 11 , c_0(3) -> 13 , c_0(3) -> 14 , c_0(3) -> 16 , c_0(3) -> 17 , c_1(13) -> 12 , c_1(13) -> 13 , c_1(15) -> 11 , c_1(15) -> 13 , c_1(15) -> 17 , b_0(2) -> 11 , b_0(3) -> 11 , b_1(2) -> 17 , b_1(3) -> 17 , b_1(14) -> 13 , a^#_0(2) -> 5 , a^#_0(3) -> 5 , a^#_0(11) -> 10 , a^#_1(17) -> 19 , c_0_0(8) -> 5 , c_0_1(18) -> 5 , c_0_1(18) -> 10 , c_0_1(18) -> 19 , b^#_0(2) -> 7 , b^#_0(3) -> 7 , b^#_0(9) -> 8 , b^#_1(14) -> 18 , c_1_0(10) -> 7 , c_1_1(19) -> 7 , c_1_1(19) -> 8 , c_1_1(19) -> 18} 2) { a^#(d(x)) -> c_0(b^#(a(x))) , b^#(c(x)) -> c_1(a^#(b(x))) , b^#(d(x)) -> c_3()} The usable rules for this path are the following: { a(d(x)) -> d(c(b(a(x)))) , b(c(x)) -> c(d(a(b(x)))) , a(c(x)) -> x , b(d(x)) -> x} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { a(d(x)) -> d(c(b(a(x)))) , b(c(x)) -> c(d(a(b(x)))) , a(c(x)) -> x , b(d(x)) -> x , a^#(d(x)) -> c_0(b^#(a(x))) , b^#(c(x)) -> c_1(a^#(b(x))) , b^#(d(x)) -> c_3()} Details: We apply the weight gap principle, strictly orienting the rules {a(c(x)) -> x} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a(c(x)) -> x} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { b^#(c(x)) -> c_1(a^#(b(x))) , b^#(d(x)) -> c_3()} and weakly orienting the rules {a(c(x)) -> x} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { b^#(c(x)) -> c_1(a^#(b(x))) , b^#(d(x)) -> c_3()} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [3] b^#(x1) = [1] x1 + [8] c_1(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a^#(d(x)) -> c_0(b^#(a(x)))} and weakly orienting the rules { b^#(c(x)) -> c_1(a^#(b(x))) , b^#(d(x)) -> c_3() , a(c(x)) -> x} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a^#(d(x)) -> c_0(b^#(a(x)))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] c(x1) = [1] x1 + [8] b(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [2] c_0(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {b(d(x)) -> x} and weakly orienting the rules { a^#(d(x)) -> c_0(b^#(a(x))) , b^#(c(x)) -> c_1(a^#(b(x))) , b^#(d(x)) -> c_3() , a(c(x)) -> x} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {b(d(x)) -> x} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] c(x1) = [1] x1 + [9] b(x1) = [1] x1 + [8] a^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { a(d(x)) -> d(c(b(a(x)))) , b(c(x)) -> c(d(a(b(x))))} Weak Rules: { b(d(x)) -> x , a^#(d(x)) -> c_0(b^#(a(x))) , b^#(c(x)) -> c_1(a^#(b(x))) , b^#(d(x)) -> c_3() , a(c(x)) -> x} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { a(d(x)) -> d(c(b(a(x)))) , b(c(x)) -> c(d(a(b(x))))} Weak Rules: { b(d(x)) -> x , a^#(d(x)) -> c_0(b^#(a(x))) , b^#(c(x)) -> c_1(a^#(b(x))) , b^#(d(x)) -> c_3() , a(c(x)) -> x} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { a_0(2) -> 4 , a_1(2) -> 9 , a_1(12) -> 11 , d_0(2) -> 2 , d_0(2) -> 4 , d_0(2) -> 6 , d_0(2) -> 8 , d_0(2) -> 9 , d_0(2) -> 11 , d_0(2) -> 12 , d_1(7) -> 4 , d_1(7) -> 9 , d_1(7) -> 11 , d_1(11) -> 10 , d_1(11) -> 11 , c_0(2) -> 2 , c_0(2) -> 4 , c_0(2) -> 6 , c_0(2) -> 8 , c_0(2) -> 9 , c_0(2) -> 11 , c_0(2) -> 12 , c_1(8) -> 7 , c_1(8) -> 8 , c_1(10) -> 6 , c_1(10) -> 8 , c_1(10) -> 12 , b_0(2) -> 6 , b_1(2) -> 12 , b_1(9) -> 8 , a^#_0(2) -> 1 , a^#_0(6) -> 5 , a^#_1(12) -> 14 , c_0_0(3) -> 1 , c_0_1(13) -> 1 , c_0_1(13) -> 5 , c_0_1(13) -> 14 , b^#_0(2) -> 1 , b^#_0(4) -> 3 , b^#_1(9) -> 13 , c_1_0(5) -> 1 , c_1_1(14) -> 1 , c_1_1(14) -> 3 , c_1_1(14) -> 13 , c_3_0() -> 1 , c_3_0() -> 3 , c_3_1() -> 3 , c_3_1() -> 13} 3) { a^#(d(x)) -> c_0(b^#(a(x))) , b^#(c(x)) -> c_1(a^#(b(x))) , a^#(c(x)) -> c_2()} The usable rules for this path are the following: { a(d(x)) -> d(c(b(a(x)))) , b(c(x)) -> c(d(a(b(x)))) , a(c(x)) -> x , b(d(x)) -> x} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { a(d(x)) -> d(c(b(a(x)))) , b(c(x)) -> c(d(a(b(x)))) , a(c(x)) -> x , b(d(x)) -> x , a^#(d(x)) -> c_0(b^#(a(x))) , b^#(c(x)) -> c_1(a^#(b(x))) , a^#(c(x)) -> c_2()} Details: We apply the weight gap principle, strictly orienting the rules { a(c(x)) -> x , a^#(c(x)) -> c_2()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a(c(x)) -> x , a^#(c(x)) -> c_2()} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {b^#(c(x)) -> c_1(a^#(b(x)))} and weakly orienting the rules { a(c(x)) -> x , a^#(c(x)) -> c_2()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {b^#(c(x)) -> c_1(a^#(b(x)))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [10] b^#(x1) = [1] x1 + [9] c_1(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a^#(d(x)) -> c_0(b^#(a(x)))} and weakly orienting the rules { b^#(c(x)) -> c_1(a^#(b(x))) , a(c(x)) -> x , a^#(c(x)) -> c_2()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a^#(d(x)) -> c_0(b^#(a(x)))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] c(x1) = [1] x1 + [8] b(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [2] c_0(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {b(d(x)) -> x} and weakly orienting the rules { a^#(d(x)) -> c_0(b^#(a(x))) , b^#(c(x)) -> c_1(a^#(b(x))) , a(c(x)) -> x , a^#(c(x)) -> c_2()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {b(d(x)) -> x} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] c(x1) = [1] x1 + [10] b(x1) = [1] x1 + [8] a^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { a(d(x)) -> d(c(b(a(x)))) , b(c(x)) -> c(d(a(b(x))))} Weak Rules: { b(d(x)) -> x , a^#(d(x)) -> c_0(b^#(a(x))) , b^#(c(x)) -> c_1(a^#(b(x))) , a(c(x)) -> x , a^#(c(x)) -> c_2()} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { a(d(x)) -> d(c(b(a(x)))) , b(c(x)) -> c(d(a(b(x))))} Weak Rules: { b(d(x)) -> x , a^#(d(x)) -> c_0(b^#(a(x))) , b^#(c(x)) -> c_1(a^#(b(x))) , a(c(x)) -> x , a^#(c(x)) -> c_2()} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { a_0(2) -> 9 , a_0(3) -> 9 , a_1(2) -> 14 , a_1(3) -> 14 , a_1(17) -> 16 , d_0(2) -> 2 , d_0(2) -> 9 , d_0(2) -> 11 , d_0(2) -> 13 , d_0(2) -> 14 , d_0(2) -> 16 , d_0(2) -> 17 , d_0(3) -> 2 , d_0(3) -> 9 , d_0(3) -> 11 , d_0(3) -> 13 , d_0(3) -> 14 , d_0(3) -> 16 , d_0(3) -> 17 , d_1(12) -> 9 , d_1(12) -> 14 , d_1(12) -> 16 , d_1(16) -> 15 , d_1(16) -> 16 , c_0(2) -> 3 , c_0(2) -> 9 , c_0(2) -> 11 , c_0(2) -> 13 , c_0(2) -> 14 , c_0(2) -> 16 , c_0(2) -> 17 , c_0(3) -> 3 , c_0(3) -> 9 , c_0(3) -> 11 , c_0(3) -> 13 , c_0(3) -> 14 , c_0(3) -> 16 , c_0(3) -> 17 , c_1(13) -> 12 , c_1(13) -> 13 , c_1(15) -> 11 , c_1(15) -> 13 , c_1(15) -> 17 , b_0(2) -> 11 , b_0(3) -> 11 , b_1(2) -> 17 , b_1(3) -> 17 , b_1(14) -> 13 , a^#_0(2) -> 5 , a^#_0(3) -> 5 , a^#_0(11) -> 10 , a^#_1(17) -> 19 , c_0_0(8) -> 5 , c_0_1(18) -> 5 , c_0_1(18) -> 10 , c_0_1(18) -> 19 , b^#_0(2) -> 7 , b^#_0(3) -> 7 , b^#_0(9) -> 8 , b^#_1(14) -> 18 , c_1_0(10) -> 7 , c_1_1(19) -> 7 , c_1_1(19) -> 8 , c_1_1(19) -> 18 , c_2_0() -> 5 , c_2_0() -> 10 , c_2_1() -> 10 , c_2_1() -> 19}